
PERFORMANCE OF SERIAL CONCATENATED CODES UNDER ITERATIVE

DECODING AND DIFFERENT UPDATE MODES

Anne Wolf, Jochen Ertel, Adolf Finger

Dresden University of Technology, Germany

ABSTRACT

Concatenated codes are typically decoded using iterative

methods. The sum-product algorithm can be shown to be

optimal for cycle-free codes. In this paper two commonly

used versions of the sum-product algorithm are investi-

gated with respect to their performance for concatenated

codes with cycles. Various serial concatenated codes with

an inner accumulator are studied. Simulation results for

both update modes are presented for Repeat-Accumulate

codes, Accumulate-Repeat-Accumulate codes, and Pro-

duct-Accumulate codes.

1. INTRODUCTION

An accumulator (the simplest rate-1 recursive convo-

lutional code) is an often used subcode for the con-

struction of concatenated codes. In the last years, many

serial concatenated codes with an accumulator as inner

code have been presented, e.g., Repeat-Accumulate codes

(RA) [1][2], Accumulate-Repeat-Accumulate codes (ARA)

[3], or Product-Accumulate codes (PA) [4].

This work was initialized by an observation for the well

known Repeat-Accumulate codes: the two different itera-

tive decoding modes for an inner accumulator (serial and

parallel update) result in different behaviors of the overall

bit-error rate. Therefore, the focus in this paper is set on

codes with a similar structure, i.e., serial concatenated

codes with an inner accumulator. An important issue is the

interrelationship of the accumulator decoding with the

capability of the concatenated codes to correct errors,

since the utilized iterative decoding – implemented by

message-passing – is not optimal for codes with cycles [5].

This paper is organized as follows. In the next section,

the method of iterative decoding for concatenated codes

and its realization with message-passing are described

briefly. The issues that result from code graphs with cycles

are discussed. In Section 3 the two commonly used update

modes for the accumulator decoding are described. Some

simulation results for Repeat-Accumulate, Accumulate-

Repeat-Accumulate, and Product-Accumulate codes are

presented in Section 4 and discussed in Section 5.

2. ITERATIVE DECODING AND CYCLES IN THE

CODE GRAPH

It is well known that concatenated codes should consist of

relatively simple component codes, in order to allow sim-

ple local decoding. The latter is required for an efficient

iterative decoding of the overall code. Moreover, the per-

formance of a concatenated code relies on sufficient ran-

domness, which can be easily achieved by a randomly

generated interleaver pattern. The structure of the code

ensures a manageable complexity for the encoding and the

decoding of the code, whereas the introduced randomness

permits a good error correcting capability [6].

Iterative decoding is based on the replacement of the

decoding of the received word as a whole by separate de-

codings of the component codes and a frequent inter-

change of extrinsic information between them. The proce-

dure is repeated for several times (iterations).

A Tanner graph is a simple graphical visualization of

the structure of a concatenated code. It consists of variable

nodes (), which stand for information or parity bits,

check nodes (), representing parity checks of all neigh-

boring variable nodes, and edges between the nodes. A

Tanner graph can be used for an efficient implementation

of the iterative decoding process, denoted message-passing

or sum-product algorithm [5]. The nodes act as independ-

ent processing units. They compute outgoing messages at

every edge from the incoming messages of all other inci-

dent edges of this node. The messages within the graph are

typically log-likelihood ratios (LLRs) corresponding to the

values of the variable nodes.

When the incoming information is processed, it is typi-

cally assumed that the information on different edges is

independent of each other. As long as the neighborhood of

every node is tree-like, the required independence of the

incoming messages is guaranteed [6]. But if a message can

return to its origin via several nodes and edges, the code

graph will contain so-called cycles. Only on cycle-free

code graphs message-passing decoding will converge to

the optimal solution [7][8]. Message-passing algorithms

applied to concatenated codes despite their cycles gener-

ally achieve no longer optimum decoding but they are still

pretty good. Moreover, iterative decoding has an excellent

complexity vs. performance trade-off [6].

The Tanner graph of a short Repeat-Accumulate code is

shown in Fig. 1. It is obvious that such a concatenated

code must possess cycles. The construction of good codes

using serial concatenation inevitably results in the pres-

ence of cycles in the code graph. Very short cycles in the

code graph impair the performance of iterative decoding.

But their probability extremely decreases for longer block

lengths.

It is apparent that it depends on the number of com-

pleted iterations whether the neighborhood of each node is

still tree-like, and thus, whether the message-passing de-

coding is still cycle-free.

3. DECODING OF THE ACCUMULATOR

For a single accumulator, there is no need to apply itera-

tive decoding, since a simple accumulator can be decoded

in one step. However, if an accumulator is one component

code of a concatenated code, it will be decoded in each

iteration, and messages will be exchanged with the other

subdecoders.

The following parts of this section present two typically

used update modes for the decoding of the accumulator

that base on the representation of the accumulator by its

Tanner graph.

3.1. Serial Accumulator Update

The serial update of the messages in the accumulator

graph corresponds to an optimum decoding for an accumu-

lator [7][8]. Messages are passed forward and backward

through the accumulator graph, so that they finally contain

all the information available for every variable node from

all other nodes (cf. Fig. 2).

The values calculated by the outer subdecoder in the

previous iteration are included as so-called a-priori infor-

mation Lo(xi) in the computation of the messages in the

code graph of the accumulator (the inner subdecoder). The

information arriving at variable node yi from the forward

and backward path is denoted Lef(yi) and Leb(yi). In the µ-th

iteration their values can be computed by

() () () ()() (1) ()

1 1ef i o i ch i ef i
L y L x L y L yµ µ µ−

− −
 = + (1)

() () () ()() (1) ()

1 1 1eb i o i ch i eb i
L y L x L y L yµ µ µ−

+ + +
 = + , (2)

where Lch(yi) denotes the LLR at the output of the channel

[7][8]. The check operation is defined as [9]

() ()()2 2
2 atanh tanh tanha bc a b= = ⋅ ⋅ . (3)

The extrinsic information of check node xi in the µ-th it-

eration is determined by

()()

e i
L xµ () ()()

1 1ch i ef i
L y L yµ

− −
 = +

 () ()()

ch i eb i
L y L y

µ + , (4)

and finally passed to the outer subdecoder. Refer to [7][8]

for more information about the serial update, initial values,

and boundary conditions.

3.2. Parallel Accumulator Update

In the context of Repeat-Accumulate codes Jin [10] pro-

posed a simple parallel decoding scheme that replaces the

serial message flow in the accumulator with only little

compromise in performance. The approach works as fol-

lows. Instead of performing one forward and one back-

ward recursion and updating the outgoing messages of

each node serially, the messages are updated in parallel at

the same time by using the values of the previous iteration.

Mathematically, this can be expressed as

() () () ()() (1) (1)

1 1ef i o i ch i ef i
L y L x L y L y

µ µ µ− −

− −
 = + (5)

() () () ()() (1) (1)

1 1 1eb i o i ch i eb i
L y L x L y L yµ µ µ− −

+ + +
 = + . (6)

According to [8] this parallelization of the relations in

(1) and (2) influences the convergence of the algorithm

and the error correcting capability of the code only mar-

ginally for sufficient iterations. But this algorithm repre-

sents no longer an optimum decoder for the accumulator.

This simplification will have an impact on the conver-

gence of the iterative decoder and the global decoding

result of the complete word. It is the aim of the next sec-

tion to study this issue for several serial concatenated

codes with an inner accumulator.

4. SIMULATION RESULTS FOR SOME SERIAL

CONCATENATED CODES

We investigated the performance of RA, ARA and PA

codes. For each code two simulations were performed us-

ing the same structure of the code graph, the same parame-

ters, and the same randomly generated interleaver pat-

tern(s). They only differed in the chosen update mode for

1

0

0

1

0

1

0

0

0

1

1

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

0

0

0

0

1

1

0

1

1

.
.
.

y
i+1

y i-1

y
i

x
i+1

x
i-1

x
i

L
e
(x

i
)

L
o
(x

i-1
)

L
o
(x

i+1
)

L
ch

(y
i-1

)

L
ch

(y
i
)

L
ch

(y
i+1

)

L
ef

(y
i-1

)

L
eb

(y
i+1

)

L
eb

(y
i
)

.
.
.

.
.
.

y
i-2

Lch(y i-2)

x
i-2Lo(xi-2)

Lef (yi-2)

.
.
.

Fig. 1 Tanner graph of a short

RA code

Fig. 2 message flow in the

code graph of the accumulator

the decoding of the accumulator(s). The received words

were decoded iteratively using message-passing. The algo-

rithm was implemented with consecutively working sub-

decoders and information exchange after the decoding of

every component code. The transmission was modeled

using a channel with Additive White Gaussian Noise

(AWGN) with Binary Phase Shift Keying (BPSK) modu-

lation. All applied interleaver patterns were generated by

an S-Random-Interleaver. For the simulation the block-

and the bit-error rate were evaluated after every iteration

up to a maximum number of 30 iterations. Only errors in

the information word were considered to identify the num-

ber of block and bit errors.

4.1. Repeat-Accumulate Codes

The Repeat-Accumulate codes (RA) were defined by Div-

salar, Jin, and McEliece in 1998 [1]. Fig. 3a shows their

structure in principle. Fig. 4 and Fig. 5 present the simula-

tion results for a non-systematic RA code of rate 1/3 with

information block length k=1024 and repetition 3 for the

serial and the parallel update mode.

As expected, the block-error rates decrease with more

iterations for both update modes. The serial update mode,

which processes the information of a higher number of

nodes per iteration, yields faster convergence than its ap-

proximation, the parallel update mode. But in some cases,

(a)

repetition accumulatorinterleaver

(b)

repe-

tition

accu-

mulator

inter-

leaver

punc-

ture

repe-

tition

punc-

ture

punc-

ture

accu-

mulator

punc-

ture
 (c)

inter-
leaver

accu-
mulator

SPC

SPC
inter-

leaver

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

B
lo

c
k
 E

rr
o
r

R
a
te

 (

R
A

 c
o
d
e
,
s
e
ri

a
l
u
p
d
a
te

)

Eb/No in dB

10 iterations
13 iterations
15 iterations
17 iterations
20 iterations
23 iterations
25 iterations
27 iterations
30 iterations

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

B
lo

c
k
 E

rr
o
r

R
a
te

 (

R
A

 c
o
d
e
,
p
a
ra

lle
l
u
p
d
a
te

)

Eb/No in dB

10 iterations
13 iterations
15 iterations
17 iterations
20 iterations
23 iterations
25 iterations
27 iterations
30 iterations

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

B
it
 E

rr
o
r

R
a
te

 (

R
A

 c
o
d
e
,
s
e
ri

a
l
u
p
d
a
te

)

Eb/No in dB

10 iterations
13 iterations
15 iterations
17 iterations
20 iterations
23 iterations
25 iterations
27 iterations
30 iterations

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

B
it
 E

rr
o
r

R
a
te

 (

R
A

 c
o
d
e
,
p
a
ra

lle
l
u
p
d
a
te

)

Eb/No in dB

10 iterations
13 iterations
15 iterations
17 iterations
20 iterations
23 iterations
25 iterations
27 iterations
30 iterations

Fig. 4 RA codes: block- and bit-error rates for the serial update

mode

 Fig. 5 RA codes: block- and bit-error rates for the parallel up-

date mode

Fig. 3a structure of RA codes

Fig. 3b structure of ARA codes

Fig. 3c structure of a PA code with an outer 2-D TPC/SPC code

when after several iterations only a little fraction of all

words is still incorrect, the following effect can be ob-

served. Especially for the serial update mode, a continued

iterative decoding of these words generates more and more

bit errors. The not converging decoding process of these

few words can cause a dramatically increase of the bit-

error rate for a higher number of iterations. Since the serial

update mode is more susceptible to this problem, it can be

finally outperformed by the parallel update mode. This

effect can be observed similarly for the min-sum algorithm

[8], a version of the message-passing algorithm with an

approximated operation at the check nodes. Fig. 6 shows

the block- and bit-error rates with the number of iterations

for a signal-to-noise-ratio Eb/N0 = 2.75dB and both update

modes.

4.2. Accumulate-Repeat-Accumulate Codes

Accumulate-Repeat-Accumulate codes (ARA), whose

structure is depicted in Fig. 3b, were first proposed by

Abbasfar, Divsalar, and Kung [3]. They can be viewed as

precoded Repeat-Accumulate codes with puncturing. For

detailed information and puncture patterns it is referred to

[3]. Simulations were done for a systematic ARA code

with information block length k=1000, repetition 3, and

the puncture patterns proposed in [3] for code rate equal to

2/3. The resulting bit-error rates are presented in Fig. 7.

The effect of the accumulator decoding mode described in

the context of RA codes can be similarly observed for

ARA codes. However, the differences between the two

modes are not as large as for the RA codes.

4.3. Product-Accumulate Codes

Product-Accumulate codes (PA) [4], sometimes also de-

noted as Parity-Accumulate codes, are a class of in-

terleaved serial concatenated codes, where the outer code

is a parallel concatenation of two Single Parity-Check

(SPC) codes. According to their structure (cf. Fig. 3c) the

check nodes can be divided into two groups to determine

the update order in the outer subdecoder. Every SPC code

corresponds to a cycle-free part of the Tanner graph and

can be decoded separately. Simulations were performed

for a non-systematic PA code with information block

length k=1000. Every block was divided into 500 parts of

length t=2 to calculate the single parity checks. Hence, the

resulting code rate was equal to 1/2. The bit-error rates for

both update modes show a similar behavior as those of RA

codes (cf. Fig. 8).

5. DISCUSSION AND CONCLUSION

Message-passing is an efficient decoding algorithm for

serial concatenated codes. It yields good performance for

these codes while requiring a relatively low decoding

complexity. It was shown that for several serial concate-

nated codes with an inner accumulator the parallel update

mode for the accumulator decoding leads to a more steadi-

ly convergence of the bit-error rates. Despite its slower

convergence, iterative decoding with the parallel update

mode can finally lead to a lower bit-error rate than the

serial update mode. This is a remarkable observation,

since the parallel update mode was originally introduced

as an approximation for the serial update mode, which re-

presents the optimum decoding for the inner accumulator.

The chosen update mode determines the number of

nodes considered in the updating process at the nodes in

every iteration. Therefore, it influences how many itera-

tions the neighborhood of each node is tree-like and the

decoding process cycle-free, i.e. optimal. The probability

of very short cycles in a code graph with a randomly gen-

erated interleaver pattern extremely decreases for long

block lengths. Hence, this effect mainly occurs for short or

moderate block lengths.

The result of the iterative decoding process can be con-

trolled by the constraints given in the code graph. It can be

examined whether the parity sums at all check nodes are

satisfied by the calculated bits. The increasing number of

bit errors can be ascribed to only a few words whose de-

coding process does not converge. These words can be

detected by a following control of all check nodes, but this

involves further decoding complexity.

Besides the bit-error rates for both update modes Fig. 6

shows for the serial update mode how many bit errors re-

main undetected after this control process by the check

nodes. This illustrates that for a decoding process with a

fixed number of iterations, e.g. 30, the parallel update

mode yields almost the same performance like iterative

decoding with serial update and following detection but

with less decoding complexity. Implementing an iterative

decoder for such serial concatenated codes with short or

moderate block lengths this fact can be utilized.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 5 10 15 20 25 30

B
lo

c
k
 /

 B
it
 E

rr
o

r
R

a
te

 (

R
A

 c
o

d
e

)

Number of Iterations

serial update, block errors
parallel update, block errors

serial update, bit errors
parallel update, bit errors

serial update, bit errors (undetected)

Fig. 6 RA codes: comparison of block- and bit-error rates for

both update modes

6. REFERENCES

[1] D. Divsalar, H. Jin, and R. J. McEliece, “Coding Theorems

for ‘Turbo-Like’ Codes,” 36th Allerton Conf. on Communica-

tion, Control and Computing, September 1998, pp. 201-210.

[2] H. Jin, A. Khandekar, and R. J. McEliece, “Irregular Repeat-

Accumulate Codes,” 2nd Int. Symp. Turbo Codes and Related

Topics, Brest, France, September 2000.

[3] A. Abbasfar, D. Divsalar, and Y. Kung, “Accumulate Repeat

Accumulate Codes,” ISIT 2004, Chicago, USA, June 27 - July 2,

2004.

[4] K. R. Narayanan, J. Li, and C. N. Georghiades, “Product

Accumulate Codes: Properties and Performance,” ITW2001,

Cairns, Australia, September 2-7, 2001.

[5] A. Khandekar, “Graph-based Codes and Iterative Decoding,”

Ph.D. dissertation, California Institute of Technology, Pasadena,

California, USA, June 2002.

[6] T. Richardson, and R. Urbanke, “The Renaissance of Gal-

lager’s Low-Density Parity-Check Codes,” IEEE Communica-

tions Magazine, August 2003, pp. 126-131.

[7] J. Li, K. R. Narayanan, and C. N. Georghiades, “An Efficient

Decoding Algorithm for Cycle-free Convolutional Codes and its

Applications,” IEEE Global Communications Conf., San Anto-

nio, Texas, USA, Nov. 2001, pp. 1063-1067.

[8] J. Li, K. R. Narayanan, and C. N. Georghiades, “Product

Accumulate Codes: A Class of Codes With Near-Capacity Per-

formance and Low Decoding Complexity,” IEEE Trans. Inform.

Theory, vol. 50, no. 1, January 2004, pp. 31-45.

[9] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of

Binary Block and Convolutional Codes,” IEEE Trans. Inform.

Theory, vol. 42, March 1996, pp. 429-445.

[10] H. Jin, “Analysis and Design of Turbo-like Codes,” Ph.D.

Thesis, California Institute of Technology, Pasadena, California,

USA, May 2001.

[11] A. Panagos, “Design and Evaluation of High Performance

Error-Correcting Codes,” November 2003. http://www.ou.edu/

idp/teamlearning/docs/documentation1.pdf

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

B
it
 E

rr
o
r

R
a
te

 (

A
R

A
 c

o
d
e
,
s
e
ri
a
l
u
p
d
a
te

)

Eb/No in dB

10 iterations
13 iterations
15 iterations
17 iterations
20 iterations
23 iterations
25 iterations
27 iterations
30 iterations

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

B
it
 E

rr
o
r

R
a
te

 (

P
A

 c
o
d
e
,
s
e
ri
a
l
u
p
d
a
te

)

Eb/No in dB

10 iterations
13 iterations
15 iterations
17 iterations
20 iterations
23 iterations
25 iterations
27 iterations
30 iterations

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

B
it
 E

rr
o
r

R
a
te

 (

A
R

A
 c

o
d
e
,
p
a
ra

lle
l
u
p
d
a
te

)

Eb/No in dB

10 iterations
13 iterations
15 iterations
17 iterations
20 iterations
23 iterations
25 iterations
27 iterations
30 iterations

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

B
it
 E

rr
o
r

R
a
te

 (

P
A

 c
o
d
e
,
p
a
ra

lle
l
u
p
d
a
te

)

Eb/No in dB

10 iterations
13 iterations
15 iterations
17 iterations
20 iterations
23 iterations
25 iterations
27 iterations
30 iterations

Fig. 7 ARA codes: bit-error rates for both update modes Fig. 8 PA codes: bit-error rates for both update modes

